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Statistical treatment of single cells in vitro

How do we mathematically describe phenotypic
heterogeneity? What is the “correct” statistical framework
for single-cell data?
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Statistics & Gibbs' theory: stochastic thermody ics for data
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E. Angelini and H. Qian. “Statistical Analysis of Random Motion and Energetic Behavior of Counting:
Gibbs' Theory Revisited” (2023). Manuscript under review.



Ergodicity and the idealized “eternal cell”

ergodic biochemical dynamics

n = (n1,f72,...,nM)
oP=MP (CME)
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Genomic variability: separation of timescales

6: (high-dimensional) parameter, encodes “genomic state” of a cell.
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Genetic variability: separation of timescales

There is a natural separation of timescales when considering the
phenotypic/biochemical state vs. the genomic state of a single cell:
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Bayesian inference for genomic parameters

- X(t) € Dx: fast-varying variable
- e.g, expression levels of a biomarker
- ©(t) € De: slow-varying variable
- e.g, genetic/genomic parameter
- assume fixed: quasi steady state

- fxo(x,0): joint stationary probability density
- p(x|@): stationary probability of X given fixed ©(t) = 6
- fo(0): marginal probability density (prior)



Bayesian inference for two-timing ergodic dynamics

Suppose we have n i.i.d. measurements X = (x1,X2,...,Xn) On the fast
variable X, generated by the process for some fixed ©(t) = 6*
(unknown). We update the posterior density for © via Bayes rule:

fol) = - Dol0)___ W)) [T p(xi0)
/D Pr(x|0)fe(0)do i=1
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Bayesian inference for two-timing ergodic dynamics

Suppose we have n i.i.d. measurements x = (X1, X2, ...,Xy) On the fast
variable X, generated by the process for some fixed ©(t) = 6*
(unknown). We update the posterior density for © via Bayes rule:

fol) = - Dol0)___ ’W)) [T p(xi0)
/D Pr(x|0)fe(0)do i=1

= f;((f)) exp [Z In p(X;G)}

~ fe(f) exp {ﬂ ZVJ(X? 0*)In p(§j|9)]

=1

£o0,&,...,&m} partitions state space Dy C R into m bins

vj(x; 0*) = relative frequency of data points x; in interval (§_1, &]



Bayesian inference for two-timing ergodic dynamics

Suppose we have n i.i.d. measurements X = (x1,X2,...,Xn) On the fast
variable X, generated by the process for some fixed ©(t) = 6*
(unknown). We update the posterior density for © via Bayes rule:

Pr(I0)fs(0) :M?ﬁmmw
| Prix0)fe(0)a0 =

= fo(0) exp zn:ln p(X;G)}

fo(01x) =

Z(x)

~ f;((f)) exp | n ZVJ(X? ) In P(§j|9)]
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as m,n — oo. In particular, as n — oo, fo — Dirac d centered at 6*!



Stochastic physics/mathematics for cellular heterogeneity

- biochemical dynamics A unique stationary probability for

a single cell

- directly related to non-equilibrium steady-state landscape for
cellular differentiation

- genetic vs. non-genetic variations: slow v. fast time scale

- statistical inference (Bayesian) of genetic parameter from
measurements of a biomarker



Questions?

This work is supported by NIH grant RO1GM135396 (PI: Dr. Sui Huang).
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