Stochastic Physics of the Single Cell: Ergodicity, Prior Probability, and Bayesian Inference

Erin Angelini January 17, 2023 2023 Stochastic Physics in Biology GRC

Department of Applied Mathematics University of Washington

Statistical treatment of single cells in vitro

How do we mathematically describe phenotypic heterogeneity? What is the "correct" statistical framework for single-cell data?

Statistics & Gibbs' theory: stochastic thermodynamics for data

E. Angelini and H. Qian. "Statistical Analysis of Random Motion and Energetic Behavior of Counting: Gibbs' Theory Revisited" (2023). Manuscript under review.

Ergodicity and the idealized "eternal cell"

Genomic variability: separation of timescales

 θ : (high-dimensional) parameter, encodes "genomic state" of a cell.

genomically identical -vs- genomically non-identical

Genetic variability: separation of timescales

There is a natural separation of timescales when considering the phenotypic/biochemical state vs. the genomic state of a single cell:

Bayesian inference for genomic parameters

- $\cdot X(t) \in \mathcal{D}_X$: fast-varying variable
 - · e.g., expression levels of a biomarker
- $\cdot \Theta(t) \in \mathcal{D}_{\Theta}$: slow-varying variable
 - · e.g., genetic/genomic parameter
 - assume fixed: quasi steady state
- $f_{X,\Theta}(x,\theta)$: joint stationary probability density
- $p(x|\theta)$: stationary probability of X given fixed $\Theta(t) = \theta$
- $f_{\Theta}(\theta)$: marginal probability density (prior)

Suppose we have n i.i.d. measurements $\mathbf{x} = (x_1, x_2, \dots, x_n)$ on the fast variable X, generated by the process for some fixed $\Theta(t) = \theta^*$ (unknown). We update the posterior density for Θ via Bayes rule:

$$f_{\Theta}(\theta|\mathbf{x}) = \frac{\Pr(\mathbf{x}|\theta)f_{\theta}(\theta)}{\int_{\mathcal{D}_{\Theta}} \Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)d\theta} = \frac{f_{\theta}(\theta)}{Z(\mathbf{x})} \prod_{i=1}^{n} p(x_{i}|\theta)$$

Suppose we have n i.i.d. measurements $\mathbf{x} = (x_1, x_2, \dots, x_n)$ on the fast variable X, generated by the process for some fixed $\Theta(t) = \theta^*$ (unknown). We update the posterior density for Θ via Bayes rule:

$$f_{\Theta}(\theta|\mathbf{x}) = \frac{\Pr(\mathbf{x}|\theta)f_{\theta}(\theta)}{\int_{\mathcal{D}_{\Theta}} \Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)d\theta} = \frac{f_{\theta}(\theta)}{Z(\mathbf{x})} \prod_{i=1}^{n} p(x_{i}|\theta)$$
$$= \frac{f_{\Theta}(\theta)}{Z(\mathbf{x})} \exp\left[\sum_{i=1}^{n} \ln p(x_{i}|\theta)\right]$$

7

Suppose we have n i.i.d. measurements $\mathbf{x} = (x_1, x_2, \dots, x_n)$ on the fast variable X, generated by the process for some fixed $\Theta(t) = \theta^*$ (unknown). We update the posterior density for Θ via Bayes rule:

$$f_{\Theta}(\theta|\mathbf{x}) = \frac{\Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)}{\int_{\mathcal{D}_{\Theta}} \Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)d\theta} = \frac{f_{\theta}(\theta)}{Z(\mathbf{x})} \prod_{i=1}^{n} p(x_{i}|\theta)$$
$$= \frac{f_{\Theta}(\theta)}{Z(\mathbf{x})} \exp\left[\sum_{i=1}^{n} \ln p(x_{i}|\theta)\right]$$
$$\approx \frac{f_{\Theta}(\theta)}{Z(\mathbf{x})} \exp\left[n \sum_{j=1}^{m} \nu_{j}(\mathbf{x}; \theta^{*}) \ln p(\xi_{j}|\theta)\right]$$

 $\{\xi_0, \xi_1, \dots, \xi_m\}$ partitions state space $\mathcal{D}_X \subseteq \mathbb{R}$ into m bins $\nu_j(\mathbf{x}; \theta^*) = \text{relative frequency of data points } x_i \text{ in interval } (\xi_{j-1}, \xi_j]$

Suppose we have n i.i.d. measurements $\mathbf{x} = (x_1, x_2, \dots, x_n)$ on the fast variable X, generated by the process for some fixed $\Theta(t) = \theta^*$ (unknown). We update the posterior density for Θ via Bayes rule:

$$f_{\Theta}(\theta|\mathbf{x}) = \frac{\Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)}{\int_{\mathcal{D}_{\Theta}} \Pr(\mathbf{x}|\theta)f_{\Theta}(\theta)d\theta} = \frac{f_{\theta}(\theta)}{Z(\mathbf{x})} \prod_{i=1}^{n} p(x_{i}|\theta)$$

$$= \frac{f_{\Theta}(\theta)}{Z(\mathbf{x})} \exp\left[\sum_{i=1}^{n} \ln p(x_{i}|\theta)\right]$$

$$\approx \frac{f_{\Theta}(\theta)}{Z(\mathbf{x})} \exp\left[n \sum_{j=1}^{m} \nu_{j}(\mathbf{x};\theta^{*}) \ln p(\xi_{j}|\theta)\right]$$

$$\sim \frac{f_{\Theta}(\theta)}{Z(\theta^{*})} \exp\left[n \int_{\mathcal{D}_{\mathbf{x}}} p(y|\theta^{*}) \ln p(y|\theta)dy\right]$$

as $m, n \to \infty$. In particular, as $n \to \infty$, $f_{\Theta} \to \text{Dirac } \delta$ centered at $\theta^*!$

Summary

Stochastic physics/mathematics for cellular heterogeneity

- biochemical dynamics
 ergodicity unique stationary probability for a single cell
 - directly related to non-equilibrium steady-state landscape for cellular differentiation
- · genetic vs. non-genetic variations: slow v. fast time scale
 - statistical inference (Bayesian) of genetic parameter from measurements of a biomarker

Questions?

This work is supported by NIH grant R01GM135396 (PI: Dr. Sui Huang).

$$\Phi(\nu) \xrightarrow{\mathbf{x} = \nu \mathbf{G}} \Phi_{g}(\mathbf{x}) \xrightarrow{\text{minimization}} \phi(\mathbf{x}')$$

$$\downarrow \text{LFT} \qquad \downarrow \text{LFT} \qquad \downarrow \text{LFT}$$

$$\Psi(\mu) \xrightarrow{\boldsymbol{\mu} = \mathbf{G}\mathbf{y}} \Psi_{g}(\mathbf{y}) \xrightarrow{\text{projection}} \psi(\mathbf{y}')$$

$$\downarrow \text{holographic rep. coarse-graining}$$

References i

E. Angelini and H. Qian.

Statistical analysis of random motion and energetic behavior of counting: Gibbs' theory revisited.

Manuscript submitted for publication, 2023.

J. Wang, L. Xu, and E. Wang.

Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations.

PNAS, 105(34):12271-12276, 2008.

J. X. Zhou, M. Aliyu, E. Aurell, and S. Huang. Quasi-potential landscape in complex multi-stable systems.

Journal of the Royal Society Interface, 9(77):3539–3553, 2012.