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Cancer treatment paradigms: recurrence & metrics of success

• Single major cause of treatment failure in cancer therapy:
emergence of treatment resistant tumor that drives recurrence

• Tacitly accepted that relapse is inevitable during the course of
drug treatment

• Reflected in clinical metrics of treatment success: Kaplan-Meier
Curves, progression-free survival (PFS) or time to tumor
progression (TTP)

• Prevalence of drug resistance and tumor recurrence is a driving
force behind developing new approaches to cancer treatment
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Recurrence is driven by tumor evolution

• Tumor recurrence is the result of Darwinian evolution via
selection for drug resistant cells

• Genetic variability within the pretreatment tumor (increased
mutation rate)

• Certain mutations confer drug-resistance
• Post-treatment clonal expansion of drug-resistant clones

• Competitive release of drug-resistant cells
• Pre-treatment: sensitive and resistant cells compete for resources
within tumor

• Post-treatment: resistant cells expand into ecological niche
previously occupied by sensitive cells

• Recurrence after treatment is causatively linked to the act of
treatment itself via evolutionary forces
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Phenotypic plasticity can confer resistance to treatment

• Variability in gene expression generates non-genetic
heterogeneity within a single clonal, isogenic population

• Phenotypic plasticity: sub-types not subject to extinction
• Produces distinct, robust and biologically relevant phenotypic
sub-states in clonal cell populations

• Mesenchymal, persister, or stem-like states
• Can confer resistance, be inherited across several cell generations,
& be induced by environmental signals

• Drug treatment as a double-edge sword: drug-sensitive cells
can be induced by treatment stress to enter a drug-resistant
persister state, thus planting the seed for recurrence
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Modeling non-genetic, treatment-induced resistance:
1. Develop an elementary population-dynamic model for the processes
of treatment-induced cell death and treatment induced
drug-resistance during cancer therapy

2. Evaluate the activity profiles (pharmacodynamics) of a drug in inducing
cell death vs. transition to the resistant state

3. Quantify how these features of treatment relate to the intrinsic
inevitability of recurrence, measured as time to progression (TTP)

4. Provide a formal survey of the consequence of non-genetic induction of
resistance by treatment, irrespective of the ensuing selection and
(micro-)environmental influences
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Mathematical Model



Dynamical model of tumor growth

xS(t) = # sensitive cells at time t
xR(t) = # resistant cells at time t


dxS
dt = (bS − dS − kSR)xS + kRSxR
dxR
dt = (bR − dR − kRS)xR + kSRxS
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Dynamical model of tumor growth

xS(t) = # sensitive cells at time t
xR(t) = # resistant cells at time t

d⃗x
dt = A⃗x, x⃗ =

[
xS
xR

]

A =

[
bS − dS − kSR kRS

kSR bR − dR − kRS

]
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Pharmacodynamic model of continuous therapy

xS(t) = # sensitive cells at time t
xR(t) = # resistant cells at time t

d⃗x
dt = A⃗x, x⃗ =

[
xS
xR

]

A =

[
bS − dS − kSR kRS

kSR bR − dR − kRS

]
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Tumor growth dynamics: time to progression

xS(t) = # sensitive cells at time t
xR(t) = # resistant cells at time t

d⃗x
dt = A⃗x, x⃗ =

[
xS
xR

]

A =

[
bS − dS − kSR kRS

kSR bR − dR − kRS

]

A model for the intrinsic limit of cancer therapy 7



Results



Heuristic dynamics: tumor recurrence as saddle point
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Qualitative sensitivity analysis: pharmacodynamics of drug-induced resistance
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Optimal dose exists for drug with low potency to induce resistance
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TTP delayed for drug with low efficacy to induce resistance
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Summary



Summary

• Minimal model to characterize how the relative strength of a
drug to either kill tumor cells or convert them into resistant
cells affects tumor recurrence dynamics

• Drug-induced resistance poses an intrinsic limit to curability of
tumors under any treatment that involves cell stress

• Dose optimization in the case of drug with low potency to induce
resistance relative to cell killing

• Must ground model in (pre)clinical data in order to make
meaningful predictions about optimal treatment courses

• Estimates of population- & pharmaco-dynamic parameters
• Statistical learning: fit parameter distributions
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Questions?

This work is supported by NIH grant R01GM135396 (PI: Dr. Sui Huang). Registration
and travel support for this presentation was provided by the MathOnc23 conference.
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Parameter search: qualitative behavior of TTP is robust
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Virtual patient cohort simulations
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